ABT-199 and ABT-737 complement the multi-kinase inhibitor TG02 to induce apoptosis in AML cells

Amina Abdul-Aziz1, Francis Burrows2, Ning Yu1, Claire Seedhouse1, Nigel Russell1,3 Monica Pallis3
University of Nottingham, UK1, Tragara Pharmaceuticals Inc, San Diego2 and Nottingham University Hospitals UK3,

Background

- TG02 is a novel multi-kinase inhibitor currently in Phase 1 trials for AML and CML, with a unique spectrum of molecular targets [Reference 1].
- We have previously shown that TG02 significantly downregulates MCL1 and XIAP but not BCL2 in AML cells at nanomolar concentrations [Reference 2].
- ABT-737 and ABT-199 are Bcl-2 mimetics which inhibit BCL2, but their effects are impaired in cells which over-express MCL1.
- All three agents are capable of targeting dormant as well as proliferating leukaemia cells and thus have the potential to reduce relapse risk, but cellular responses are heterogeneous.

Aims

- To determine whether basal expression levels of BCL2 or MCL1 in patient samples correspond to sensitivity to TG02.
- To determine whether a BCL2 inhibitor increases sensitivity to TG02.
- To determine whether the decrease in cell number induced by the combination of agents is a result of apoptosis.

Methods

- Cells
 KG1a, OCI-AML3 and MV4.11 cell lines and presentation or relapse bone marrow or peripheral blood samples from untreated patients with AML were used in this project.

- Cell viability measurements (patient cells)
 - Primary cells used to generate results in Figure 2 were cultured in triplicate at 1 x 10^6/ml using fibronectin-coated wells in serum-free medium supplemented with 20 ng/ml IL-3, 20 ng/ml IL-6, 50 ng/ml SCF, 100 ng/ml SDF-1 and 50 ng/ml TPO. Cells used to generate results in Figure 6 were cultured in RPMI with 10% FCS supplemented with 20 ng/ml each of IL-3, IL-6, SCF and 25 ng/ml G-CSF.

- Cell growth inhibition/cell death measurements in cell lines
 - KG1a, OCI-AML3 and MEX113 cells were cultured for 24 hours in RPMI with TG02 (Tragara Pharmaceuticals), ABT-737 (Seppro) and ABT-199 (Active Biochemicals). The decrease in the number of viable cells was measured cytometrically using alamar blue.

- Determination of synergy was by the Chou and Talalay method, using CalcuSyn software.

- BCL2 and MCL1 measurements
 - BCL2 and MCL1 were measured in CD2-depleted presentation samples from AML patients by quantitative real time PCR. Details have been published previously [Reference 2].

- Apoptosis measurements
 - Epithelial of bone and MCL that were only exposed upon activation were measured using clone TC100/161 for bak (Millipore) and clone 3 (Transduction Labs) for Bax. Active, bax, bak, active caspase 3 and Annexin V were measured 16 hours post-treatment.

Results

Figure 2. BCL2 over-expression is a resistance factor to TG02

48 hour sensitivity to 100 nM TG02 was measured in a cohort of 22 samples. The in vitro toxicity of TG02 was inversely related to basal expression levels of BCL2 (P=0.001), but not MCL1.

Figure 3. Sensitivity of KG1a, MV4.11 and OCI-AML3 cells to TG02, ABT-199 and ABT-737

Figure 4. TG02 synergises with ABT-199 and ABT-737 to induce loss of viable cells

Figure 5. BAX and BAX are activated by the combination of TG02 with either ABT-199 or ABT-737 in KG1a cells

Figure 6. Sensitivity of primary AML samples to TG02, ABT-199 and ABT-737

Figure 7. Timecourse for BAX activation in response to TG02 and ABT-199

The graphs also indicate the percentage loss with each compound at 18 hours. TG02 - dark markings, ABT-199 - light markings. (i) mean +/- SD for five samples; (ii) data from a sample (AML12) that was more sensitive to ABT-199 and (iii) another (AML18) that was more sensitive to TG02.

Disclosure statement
Dr Francis Burrows is an employee of Tragara Pharmaceuticals Inc. Dr Monica Pallis received financial support from Tragara for the laboratory work shown in this poster.

Summary and conclusions

We have shown an association between BCL2 over-expression and resistance to TG02 in primary AML samples. In KG1a cells we show synergy between TG02 and ABT-199 or ABT-737 at 24 hours, and find induction of apoptosis is considerably higher with the combinations than with the individual agents.

AML samples have a heterogeneous response to all three agents. TG02 was more toxic than the ABT-199 and ABT-737 at equimolar concentrations, but the summarised data indicate that the combinations are at least as effective as TG02 alone.

We conclude that the cytotoxic actions of TG02 and ABT-737 or ABT-199 are complementary.

References

Acknowledgement
Financial support from the Nottinghamshire Leukaemia Appeal is gratefully acknowledged.